14 research outputs found

    IDH mutation-induced suppression of type-1 anti-glioma immune response

    Get PDF
    Isocitrate dehydrogenase (IDH) mutations are the first mutations that occur during the oncogenic process of lower-grade glioma (LGG) and confers a novel gain-of-function activity by converting α-ketoglutarate (αKG) to 2-hydroxyglutarate (2HG), promoting DNA hyper-methylation. Our analysis of LGG cases from The Cancer Genome Atlas (TCGA) database revealed that IDH-mutant (IDH-Mut) cases exhibit decreased expression of type-1 effector T cell response-related genes, which are critical for anti-glioma immunity, including: CD8A, IFNG, OAS2, GZMA, EOMES, CXCL9 and CXCL10, compared with IDH-wild type (IDH-WT) cases. On the other hand, type-2 and regulatory T cell response-related genes, such as IL5 and TGFB1, are not significantly different between IDH-Mut vs. WT cases, indicating that the observed down-regulation of type-1 response-related genes does not merely represent a possible global gene suppression. Furthermore, IDH-Mut cases exhibit increased CXCL10 promotor methylation compared with WT cases. We thus hypothesized that IDH mutation-mediated tumor intrinsic mechanisms occurring within glioma cells may inhibit anti-tumor immunity to promote tumor growth. In vitro, a normal human astrocyte (NHA) cell line transfected with IDH1-Mut cDNA expressed lower levels of CXCL10 compared to NHA cells transfected with WT IDH1. Consistently, C57Bl/6 mouse-syngeneic astrocyte and glioma cell lines transfected with IDH1-Mut expressed lower levels of CXCL10 gene and protein, compared to control cells transfected with IDH-WT, which was restored following 30 day treatment of the cells with the IDH1 inhibitor, IDH-C35. Furthermore, in vivo orthotopic IDH1-Mut gliomas at 21 days post-intracranial injection in syngeneic mice expressed lower levels of T cell chemokines CXCL9 and CXCL10 as determined by RT-PCR and ELISA and reduced infiltration of CD3+CD8+ T cells as determined by flow cytometry and quantitative immunohistochemistry compared with control IDH1-WT gliomas. Further, an in vitro migration assay demonstrated reduced migration of T cells towards culture supernatants from IDH1-Mut cell lines compared with control supernatants derived from IDH1-WT cells. Overall, our data demonstrate that IDH mutations in tumor cells lead to reduced T cell attracting chemokines and reduced T cell accumulation in gliomas. Our analyses of the TCGA 450K gene methylation database suggest that the suppressed expression of OAS2 and CXCL10 in IDH1-Mut cases is associated with hypermethylation of the promoter for these genes. Indeed, treatment of IDH-Mut cell lines with demethylating agent 5-Aza-CdR restored CXCL10 expression levels. Our data suggest that IDH inhibitors and demethylation agents may be used to enhance T cell recruitment to LGG in combination with T cell based immunotherapies

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas.

    No full text
    Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 are among the first genetic alterations observed during the development of lower-grade glioma (LGG). LGG-associated IDH mutations confer gain-of-function activity by converting α-ketoglutarate to the oncometabolite R-2-hydroxyglutarate (2HG). Clinical samples and gene expression data from The Cancer Genome Atlas (TCGA) demonstrate reduced expression of cytotoxic T lymphocyte-associated genes and IFN-γ-inducible chemokines, including CXCL10, in IDH-mutated (IDH-MUT) tumors compared with IDH-WT tumors. Given these findings, we have investigated the impact of IDH mutations on the immunological milieu in LGG. In immortalized normal human astrocytes (NHAs) and syngeneic mouse glioma models, the introduction of mutant IDH1 or treatment with 2HG reduced levels of CXCL10, which was associated with decreased production of STAT1, a regulator of CXCL10. Expression of mutant IDH1 also suppressed the accumulation of T cells in tumor sites. Reductions in CXCL10 and T cell accumulation were reversed by IDH-C35, a specific inhibitor of mutant IDH1. Furthermore, IDH-C35 enhanced the efficacy of vaccine immunotherapy in mice bearing IDH-MUT gliomas. Our findings demonstrate a mechanism of immune evasion in IDH-MUT gliomas and suggest that specific inhibitors of mutant IDH may improve the efficacy of immunotherapy in patients with IDH-MUT gliomas
    corecore